
Chapitre 8

Chimie et électrochimie

8.1 Oxydation de l’ammoniac

La réaction chimique d’oxydation de l’ammoniac s’écrit,

4 NH3 + 5 O2 → 4 NO + 6 H2O

On considère que cette réaction a lieu initialement avec NNH3
(0) moles de NH3

et NO2
(0) moles de O2. Déterminer la quantité de NH3, O2, NO et H2O à la

fin de la réaction.

Application numérique

NNH3 (0) = 2 mol, NO2 (0) = 2 mol, NNO (0) = 0 mol et NH2O (0) = 0 mol.

8.1 Solution

Les coefficients stœchiométiques de la réaction chimique,

4 NH3 + 5 O2 → 4 NO + 6 H2O

sont νNH3
= − 4, νO2

= − 5, νNO = 4 et νH2O = 6. D’après la relation (8.6),
l’évolution temporelle du nombre de moles d’une substance A est donnée par,

NA (t) = NA (0) + νA ξ (t)

où ξ (t) est l’avancement de la réaction chimique. L’oxygène moléculaire O2

sera consommé en premier. La réaction s’arrêtera au temps tf donné par,

NO2 (tf ) = NO2 (0) + νO2 ξ (tf ) = 0

ce qui implique que l’avancement final de la réaction chimique est,

ξ (tf ) = − NO2 (0)

νO2

=
2

5
mol

A la fin de la réaction, la quantité de NH3 est,

NNH3
(tf ) = NNH3

(0) + νNH3
ξ (tf ) = 0.4 mol

la quantité de NO est,

NNO (tf ) = NNO (0) + νNO ξ (tf ) = 1.6 mol

et la quantité de H2O est,

NH2O (tf ) = NH2O (0) + νH2O ξ (tf ) = 2.4 mol
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8.2 Lampe à acétylène

L’acétylène (C2H2) peut être produite par réaction chimique entre l’eau (H2O)
et le carbure de calcium (CaC2) :

CaC2 (s) + 2 H2O (l) → C2H2 (g) + Ca(OH)2 (s)

où (s) et (l) indique si la substance est solide ou liquide. Un spéléologue envisage
d’utiliser une lampe à acétylène qui consomme le gaz produit par la lampe avec
un débit de V̇ (aux conditions standard de température et de pression). Etant
donné que l’expédition est sensée durer un temps t, déterminer la quantité de
carbure de calcium dont l’explorateur aurait besoin s’il choisissait ce type de
lampe. Déterminer le quantité d’eau utilisée par cette lampe durant ce temps.

Application numérique

T = 0◦C, p = 105 atm, V̇ = 10 l/h et t = 8 h.

8.2 Solution

L’acétylène peut être considéré comme un gaz parfait. Ainsi, aux conditions
standard de pression et de température, le nombre of moles de C2H2 requises
pour cette expédition est,

NC2H2
=
p V

RT
=
p V̇ t

R T
= 3.52 mol

Vu que les coefficients stœchiométiques de l’acétylène et du carbure de cal-
cium sont égaux et opposés, i.e. νC2H2

= − νCaC2
= 1, cela signifie que

NCaC2 = NC2H2 = 3.52 mol de carbure de calcium sont consommées et 3.52 mol
d’acétylène sont produites. La masse mCaC2 de carbure de calcium est le produit
du nombre de moles NC2H2

et de la masse molaire MCaC2
= 64 g,

mCaC2
= NCaC2

MCaC2
= NC2H2

MCaC2
= 225 g

Vu que le coefficient stœchiométique de l’eau est le double de l’opposé du coeffi-
cient stœchiométique de l’acétylène, i.e. νH2O = − 2 νC2H2

= 2, cela signifie que
NH2O = 2NC2H2

= 7.05 mol d’eau sont consommées afin de produire 3.52 mol
d’acétylène. La masse mH2O d’eau est le produit du nombre de moles NH2O et
de la masse molaire MH2O = 18 g,

mH2O = NH2OMH2O = 2NC2H2 MH2O = 127 g

8.3 Réactions chimiques couplées

L’oxydation du méthane peut avoir lieu par une des deux réactions suivantes :

CH4 + 2 O2
1−→ CO2 + 2 H2O

2 CH4 + 3 O2
2−→ 2 CO + 4 H2O
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Lorsque les réactions s’arrêtent au temps tf parce que tout le méthane a été
brûlé, la masse totale des produits (CO2, CO, H2O) est

m (tf ) = mCO2
(tf ) +mCO (tf ) +mH2O (tf )

Déterminer la masse initiale de méthane mCH4 (0) en termes de la masse totale
m (tf ) des produits et de la masse d’eau mH2O (tf ).

Application numérique

m (tf ) = 24.8 g et mH2O (tf ) = 12.6 g.

8.3 Solution

Les coefficients stœchiométiques de la réaction chimique,

CH4 + 2 O2
1−→ CO2 + 2 H2O

2 CH4 + 3 O2
2−→ 2 CO + 4 H2O

sont ν1,CH4
= − 1, ν1,O2

= − 2, ν1,CO2
= 1, ν1,H2O = 2, ν2,CH4

= − 2, ν1,O2
=

− 3, ν2,CO = 2 et ν2,H2O = 4. D’après la relation (8.11), l’évolution temporelle
du nombre de moles d’une substance A qui prend part aux réactions couplées
1 et 2 est donnée par,

NA (t) = NA (0) + ν1,A ξ1 (t) + ν2,A ξ2 (t)

Les réactions s’arrêtent au temps tf lorsque tout le méthane est consommé.
Ainsi, d’après la relation (8.11),

NCH4
(tf ) = NCH4

(0) + ν1,CH4
ξ1 (tf ) + ν2,CH4

ξ2 (tf ) = 0

ce qui implique que le nombre initial de moles de méthane s’écrit,

NCH4
(0) = ξ1 (tf ) + 2 ξ2 (tf )

Initialement, il n’y a pas d’eau, i.e. NH2O (0) = 0. Ainsi, d’après la rela-
tion (8.11), on écrit,

NH2O (tf ) = NH2O (0) + ν1,NH2O
ξ1 (tf ) + ν2,NH2O

ξ2 (tf )

Comme mH2O (tf ) = 12.6 g et MH2O = 18 g, on obtient l’identité suivante,

NH2O (tf ) =
mH2O (tf )

MH2O
= 2 ξ1 (tf ) + 4 ξ2 (tf ) = 0.7 mol

Initialement, il n’y a ni dioxyde ni monoxyde de carbone, i.e. NCO2
(0) = 0 et

NCO (0) = 0. D’après la relation (8.6), l’évolution temporelle du dioxyde et du
monoxyde de carbone sont données par,

NCO2 (tf ) = NCO2 (0) + ν1,CO2 ξ1 (tf ) = ξ1 (tf )

NCO (tf ) = NCO (0) + ν2,CO ξ2 (tf ) = 2 ξ2 (tf )
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La masse totale m (tf ) est le produit de leur nombre de moles et de leurs masses
molaires,

m (tf ) = NCO2
(tf ) MCO2

+NCO (tf ) MCO +NH2O (tf ) MH2O = 24.8 g

ce qui implique que,

MCO2

m (tf )
NCO2 (tf ) +

MCO

m (tf )
NCO (tf ) +

MH2O

m (tf )
NH2O (tf ) = 1 mol

qui peut être mis sous la forme,(
MCO2

m (tf )
+ 2

MH2O

m (tf )

)
ξ1 (tf ) +

(
2
MCO

m (tf )
+ 4

MH2O

m (tf )

)
ξ2 (tf ) = 1 mol

Comme m (tf ) = 24.8 g, MH2O = 18 g, MCO = 28 g et MCO2 = 48 g, on obtient
les identités suivantes,

3.39 ξ1 (tf ) + 5.26 ξ2 (tf ) = 1 mol

En résolvant le système d’équations,

2 ξ1 (tf ) + 4 ξ2 (tf ) = 0.7 mol

3.39 ξ1 (tf ) + 5.26 ξ2 (tf ) = 1 mol

on trouve que,

ξ1 (tf ) = 0.10 mol et ξ2 (tf ) = 0.12 mol

Comme MCH4 = 16 g, la masse initiale de méthane mCH4 (tf ) consommée dans
cette réaction est,

mCH4
(tf ) = NCH4

(tf ) MCH4
=
(
ξ1 (tf ) + 2 ξ2 (tf )

)
MCH4

= 5.4 g

8.4 Variance

La variance v est le nombre de degrés de liberté d’un système constitué de r
substances dans m phases qui participent à n réactions chimiques. La variance
v est obtenue en soustrayant n contraintes du nombre de degrés de liberté f
déterminé par la règle des phases de Gibbs (6.63),

v = f − n = r − m− n+ 2

La pression p et la température T ne sont pas fixées. Sinon, il y a deux
contraintes supplémentaires pour fixer p et T . Appliquer ce concept à la si-
tuation suivante.

1) Déterminer la variance du craquage du méthane décrit par la réaction chi-
mique :

CH4 (g) � C (g) + 2 H2 (g)
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2) Un système est constitué de trois phases et il y a une réaction chimique entre
les substances. La variance est deux. Déterminer le nombre r de substances
dans le système.

3) Un système est à température fixée et il est constitué de trois phases. Sa
variance est deux et il y a deux réactions chimiques entre les substances.
Déterminer le nombre r de substances dans le système.

8.4 Solution

1) Il y a trois substances (CH4, C and H2), i.e. r = 3. Il y a une phase gazeuse,
i.e. m = 1. Il y a une réaction chimique, i.e. n = 1. Ainsi, la variance v est,

v = r − m− n+ 2 = 3

2) Il y a trois phases, i.e. m = 3. Il y a une réaction chimique, i.e. n = 1. La
variance vaut deux, i.e. v = 2. Ainsi, le nombre r de substances est,

r = v +m+ n− 2 = 4

3) Il y a trois phases, i.e. m = 3. Il y a deux réactions chimiques, i.e. n = 2.
La variance vaut deux, i.e. v = 2. Cependant, il y a une contrainte supplé-
mentaire due au fait que la température est fixée. Dans ce cas particulier,
il y a un degré de liberté en moins. Ainsi, la variance est donnée par,

v = r − m− n+ 1

ce qui implique que le nombre r de substances est,

r = v +m+ n− 1 = 6

8.5 Enthalpie de formation

1) Il y a deux isomères du butane : le butane (C4H10) et l’isobutane (methyl-
propane) (iso-C4H10). Déterminer l’enthalpie standard ∆h◦ de la réaction
d’isomérisation du butane en isobutane en termes des enthalpies of forma-
tion des deux isomères, hC4H10

et hiso-C4H10
.

2) Le module lunaire “Eagle” de la mission Apollo était propulsé en utilisant
l’énergie libérée par la réaction :

H2NN(CH3)2(l) + 2 N2O4(l)→ 3 N2(g) + 2 CO2(g) + 4 H2O(g)

Déterminer l’enthalpie molaire ∆h◦ de cette réaction exothermique en
termes des enthalpies de formation des réactifs, hH2NN(CH3)2(l), hN2O4(l)

et des products hN2(g) hCO2(g), hH2O.

3) La combustion de l’acétylène (C2H2) est décrite par la réaction chimique :

C2H2(g) +
5

2
O2(g) → 2 CO2(g) + H2O(l)

Déterminer l’enthalpie de formation hC2H2 de l’acétylène (C2H2) en termes
des enthalpies molaires hO2(g), hCO2(g), hH2O(g), l’enthalpie molaire de la
réaction ∆h◦ et l’enthalpie molaire de vaporisation de l’eau hvap.
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Application numérique

1) hC4H10
= − 2877 kJ/mol, hi-C4H10

= − 2869 kJ/mol,
2) hH2O(g) = − 242 kJ/mol, hCO2(g) = − 394 kJ/mol,
hN2(g) = 0 kJ/mol, hN2O4(l) = 10 kJ/mol, hH2NN(CH3)2(l) = 52 kJ/mol

3) ∆h◦ = − 1300 kJ/mol, hvap = 44 kJ/mol, hO2(g) = 0 kJ/mol,

8.5 Solution

1) D’après la loi de Hess (8.53), l’enthalpie standard d’isomérisation ∆h◦ du
butane en isobutane est la différence entre les enthalpies de formation de
l’isobutane et du butane,

∆h◦ = hiso-C4H10 − hC4H10 = 8 kJ/mol

ce qui signifie que l’isomérisation en endothermique vu que ∆h◦ > 0.

2) L’enthalpie molaire ∆h◦ libérée par cette réaction exothermique est obtenue
à l’aide de la loi d’Hess (8.53),

∆h◦ = 3hN2(g) + 2hCO2(g) + 4hH2O(g) − hH2NN(CH3)2(l) − 2hN2O4(l)

= − 1828 kJ/mol

3) L’enthalpie molaire libérée ∆h◦ par la combustion de l’acétylène (C2H2)
est obtenue à l’aide de la loi d’Hess (8.53),

∆h◦ = 2hCO2(g) + hH2O(l) − hC2H2
− 5

2
hO2

L’enthalpie molaire de la vapeur d’eau hH2O(g) est égale à la somme de
l’enthalpie molaire de l’eau liquide hH2O(l) et de l’enthalpie molaire de va-
porisation de l’eau hvap,

hH2O(l) = hH2O(g) + hvap

Ainsi, l’enthalpie de formation hC2H2
de l’acétylène (C2H2) est donnée par,

hC2H2
= 2hCO2(g) + hH2O(g) −

5

2
hO2
− ∆h◦ − hvap = 226 kJ/mol

8.6 Travail et chaleur d’une réaction chimique

De la paille de fer est placée dans un cylindre rempli d’oxygène moléculaire O2,
considérée comme un gaz parfait. Un piston garantit une pression constante du
gaz. La paille de fer réagit avec l’oxygène moléculaire pour former de l’oxyde
de fer Fe2O3,

2 Fe +
3

2
O2 → Fe2O3

Cette réaction est lente, de sorte que le gaz reste à température ambiante T0.
Déterminer la chaleur Qif , le travail Wif et la variation d’énergie interne ∆Uif

en termes de l’enthalpie de réaction ∆Hif pour une réaction faisant intervenir
deux moles de fer.
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Application numérique

∆Hif = − 830 kJ, T0 = 25◦C.

8.6 Solution

Comme le système est couplé à un réservoir de travail à pression constante,
d’après la relation (4.61) le transfert de chaleur Qif est égale à l’enthalpie de
réaction,

Qif = ∆Hif = − 830 kJ

D’après la relation (2.28), le travail Wif effectué sur le gaz parfait à pression
constante p0 est donné par,

Wif = −
∫ Vf

Vi

p0 dV = − p0

∫ Vi−∆V

Vi

dV = p0 ∆V

Pour 2 moles de Fe consumées, 3/2 moles de O2 sont oxydées, i.e. ∆N = 3/2.
La variation de volume de l’oxygène moléculaire ∆V à pression constante p0

s’écrit,
p0 ∆V = ∆NRT0

Ainsi, le travail Wif est mis sous la forme suivante,

Wif = p0 ∆V = ∆NRT0 = 3715 kJ

D’après le premier principe (1.44), la variation d’énergie interne ∆Uif est don-
née par,

∆Uif = Wif +Qif = 2885 kJ

8.7 Loi d’action de masse : estérification

La réaction d’estérification de Fischer est donnée par,

R-(C=O)-OH + R-OH � R-(C=O)-OR + H2O

Déterminer la constante d’équilibre K de cette réaction en termes de la concen-
tration des réactifs cR-(C=O)-OH, cR-OH et des produits cR−(C=O)−OR et cH2O

à l’équilibre.

Application numérique

cR-(C=O)-OH = 1/3, cR-OH = 1/3, cR−(C=O)−OR = 2/3, cH2O = 2/3.

8.7 Solution

Dans cette réaction, les coefficients stœchiométriques des produits valent 1 et
les coefficients stœchiométriques des réactants valent − 1. A l’aide de la loi
d’action de masse (8.80), on détermine la constante d’équilibre,

K =
cR−(C=O)−OR cH2O

cR-(C=O)-OH cR-OH
= 4
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8.8 Loi d’action de masse : monoxyde de carbone

Dans un réacteur de volume V0, initialement vide, du carbone solide est intro-
duit en excès ainsi que NCO2(g) (0) moles de dioxyde de carbone. Le réacteur
est amené à la température T0 et le système atteint un équilibre chimique,

CO2(g) + C(s) � 2 CO(g)

A l’équilibre, qui est complètement établi au temps tf , la densité des gaz rela-
tivement à l’air est δ. Déterminer :

1) la pression p (tf ) dans le réacteur.

2) la constante d’équilibre K.

3) la variance v définie en exercice (8.4).

Application numérique

V0 = 1 l, T0 = 1000◦C, NCO2(g) (0) = 0.1 mol, δ = 1.24, Mair = 29 g.

8.8 Solution

1) Les coefficients stœchiométriques de la réaction,

CO2(g) + C(s) � 2 CO(g)

sont νCO2(g) = − 1, νC(s) = − 1 et νCO(g) = 2. D’après la relation (8.6),
les évolutions temporelles du nombre de moles de CO2(g) et de CO(g) sont
données par,

NCO2(g) (t) = NCO2(g) (0)− ξ (t)

NCO(g) (t) = 2 ξ (t)

vu que NCO(g) (0) = 0. Le nombre total de moles de gaz est,

Ngaz (t) = NCO2(g) (t) +NCO(g) (t) = NCO2(g) (0) + ξ (t)

Quand l’équilibre chimique est atteint au temps tf , la densité δ des gaz
relativement à la densité qu’aurait le même nombre de molécules d’air est
donnée par,

δ =
NCO2(g) (tf ) MCO2 +NCO(g) (tf ) MCO

Ngaz (tf ) Mair

=

(
NCO2(g) (0)− ξ (tf )

)
MCO2 + 2 ξ (tf ) MCO(

NCO2(g) (0) + ξ (tf )
)
Mair

Ainsi, l’avancement de la réaction est,

ξ (tf ) =
NCO2(g) (0)

(
MCO2

− Mair δ
)

Mair δ +MCO2
− 2MCO

= 0.043 mol
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vu que MCO = 28 g et MCO2 = 48 g. La pression du gaz p (tf ) dans le
réacteur est donnée par la loi du gaz parfait,

p (tf ) =
Ngaz (tf )RT0

V0
=

(
NCO2(g) (0) + ξ (tf )

)
RT0

V0
= 1.51 · 106 Pa

2) Les concentrations des gaz à l’équilibre sont,

cCO =
NCO(g) (tf )

Ngaz (tf )
=

2 ξ (tf )

NCO2(g) (0) + ξ (tf )

cCO2
=
NCO2(g) (tf )

Ngaz (tf )
=
NCO2(g) (0)− ξ (tf )

NCO2(g) (0) + ξ (tf )

A l’aide de la loi d’action de masse (8.80), on détermine la constante d’équi-
libre,

K =
(cCO)

2

cCO2

=
4 ξ2 (tf )(

NCO2(g) (0)
)2

− ξ2 (tf )
= 0.91

3) Il y a trois substances, CO(g), CO2(g), C(S), donc r = 3, deux phases
(g), (s), donc m = 2, et une réaction chimique, donc n = 1. Vu que la
température T0 est fixée, il y a une contrainte supplémentaire. La variance
vaut,

v = r − m− n+ 1 = 1

8.9 Equilibre chimique

Dans un cylindre, on place NN2
moles d’azote moléculaire N2 et NH2

moles
d’hydrogène moléculaire H2 qui peuvent être considérés comme des gaz par-
faits. Le système est fermé par un piston dont le poids est négligeable. Les gaz
parfaits sont initialement séparés par une paroi imperméable de masse négli-
geable (fig. 8.1). Ils sont maintenus à température constante T et à pression
constante p. Lorsque la paroi est enlevée, une réaction chimique, notée a, a lieu
grâce à un catalyseur que l’on peut ignorer dans l’analyse. La réaction chimique
produit de l’ammoniac NH3, qui peut être considéré comme un gaz parfait. On
suppose que la température et la pression sont constantes lors de la réaction
chimique.

1) Définir la réaction chimique a et déterminer les coefficients stœchiomé-
triques νaN2

, νaH2
et νaNH3

.

2) Dans le cas particulier où le système est constitué initialement de N
moles d’azote moléculaire et de 3N moles d’hydrogène moléculaire qui se
transforment entièrement en ammoniac, déterminer le rapport des volumes
VNH3/ (VN2 + VH2).

3) Déterminer la condition d’équilibre des potentiels chimiques.
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H2

N2

NH3N2

H2

Fig. 8.1 Dans l’état initial, de l’hydrogène moléculaire H2 et de l’azote moléculaire N2 sont
séparés par une paroi dans un cylindre fermé par un piston. Après avoir retiré la paroi, une
réaction chimique produit de l’ammoniac NH3.

4) Exprimer cette condition d’équilibre explicitement en fonction des concen-
trations d’azote moléculaire cN2 et d’hydrogène moléculaire cH2 .

8.9 Solution

1) Les coefficients stœchiométriques de la réaction chimique a sont νaN2 = − 1,
νaH2 = − 3 et νaNH3 = 2,

N2 + 3 H2 � 2 NH3

2) Dans le cas particulier où la réaction chimique transforme entièrement
l’azote et l’hydrogène moléculaires en ammoniac, les volumes initiaux de
gaz parfaits VN2 , VH2 et le volume final de gaz parfait VNH3 sont donnés
par,

VN2
=
NRT

p
et VH2

=
3NRT

p
et VNH3

=
2NRT

p

Par conséquent, le rapport des volumes de gaz parfaits est donné par,

VNH3

VN2
+ VH2

=
1

2

Cela implique que la réaction chimique a provoque la diminution du volume
de gaz lors de la production d’ammoniac.

3) Compte tenu de l’expression explicite des coefficients stœchiométriques, la
condition d’équilibre (8.15) des potentiels chimiques s’écrit,

−µN2
− 3µH2

+ 2µNH3
= 0

4) D’après la définition (8.68) des potentiels chimiques en fonction de la
concentration,

µN2
(T, p, cN2

) = µN2
(T, p) +RT ln (cN2

)

µH2
(T, p, cH2

) = µN2
(T, p) +RT ln (cH2

)

µNH3
(T, p, cNH3

) = µNH3
(T, p) +RT ln (cNH3

)
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et du fait que la concentration d’ammoniac est liée aux concentrations
d’azote et d’hydrogène moléculaires,

cNH3
= 1− cN2

− cH2

la condition d’équilibre chimique est mise sous la forme,

−µN2
(T, p)− 3µH2

(T, p) + 2µNH3
(T, p) = RT ln

(
cN2

c3H2

(1− cN2
− cH2

)
2

)

8.10 Entropie de mélange

Un récipient de volume V est divisé en deux compartiments par une paroi im-
perméable fixe. Un compartiment contient un gaz parfait 1, l’autre contient un
gaz parfait 2. Les deux compartiments sont à la pression p et la température
T . Si la paroi est enlevée, le système évolue vers l’équilibre. Durant ce proces-
sus, de l’état initial i à l’état final f , le système est maintenu à température
constante T . Il n’y a ni réaction chimique ni interaction entre les deux gaz. Par
conséquent, le mélange est également un gaz parfait.

1) Déterminer la variation d’énergie interne ∆Uif durant ce processus.

2) Montrer que la variation totale d’entropie ∆Sif s’écrit (fig. 8.2),

∆Sif = − (N1 +N2)R

2∑
A=1

cA ln (cA)

D
S i

f/
[(

N
1+

N
2)

R
]

Concentration c1 de gaz 1 
0 1

0
0.5

0.2

0.4

0.6

0.8

Fig. 8.2 Entropie de mélange, comme fonction de la concentration c1 du gaz 1.
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8.10 Solution

1) L’énergie interne reste constante durant ce processus, car la température
des deux gaz parfaits est constante et l’énergie interne du gaz parfait est
proportionnelle à sa température. Le mélange de deux gaz parfaits qui
n’interagissent pas est aussi un gaz parfait. Ainsi,

∆Uif = Uf − Ui = 0

2) D’après l’équation d’Euler (4.7), on exprime l’énergie interne initiale
Ui (S1, S2, N1, N2) et l’énergie interne finale Uf (S,N1, N2) en termes de
leurs variables d’état,

Ui (S1, S2, N1, N2) = T (S1 + S2) +

2∑
A=1

µA (T, p)NA

Uf (S,N1, N2) = T S +

2∑
A=1

µA (T, p, cA)NA

Etant donné que l’énergie interne reste constante,

∆Uif = T (S − S1 − S2) +

2∑
A=1

(
µA (T, p, cA)− µA (T, p)

)
NA = 0

A l’aide de l’expression pour la variation d’entropie,

∆Sif = Sf − Si = S − S1 − S2

et du potentiel chimique pour un mélange de gaz parfaits (8.68),

µA (T, p, cA) = µA (T, p) +RT ln (cA)

la relation précédente peut être mise sous la forme,

T∆Sif +RT

2∑
A=1

ln (cA)NA = 0

A l’aide de l’expression (8.35) pour la concentration cA = NA/ (N1 +N2),
on obtient l’entropie de mélange ∆Sif ,

∆Sif = − (N1 +N2)R

2∑
A=1

cA ln (cA)

où ∆Sif ≥ 0 car 0 ≤ cA ≤ 1. Cette expression de la variation d’entropie
est analogue à l’entropie de von Neumann .
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8.11 Mélange isotherme

Un système isolé de volume V est constitué de deux sous-systèmes simples
de volumes V1 et V2 initialement séparés par une paroi diatherme fixe. La
température T et la pression p sont les mêmes dans les deux sous-systèmes. La
température T est constante. Le volume total V est fixe. Initialement, il y a
N1 moles d’un gaz parfait 1 dans un sous-système et N2 moles d’un gaz parfait
2 dans l’autre. On laisse les gaz parfaits diffuser et se mélanger en enlevant la
paroi.

(1)

Il n’y a pas de réaction chimique entre les gaz parfaits.

1) Déterminer la variation d’énergie interne ∆U du système lors du mélange.

2) Déterminer la variation d’enthalpie ∆H du système lors du mélange.

3) Déterminer la variation d’entropie ∆S du système lors du mélange en fonc-
tion des concentrations c1 et c2 des gaz parfaits dans le mélange et montrer
qu’elle est positive.

4) Déterminer la variation d’énergie libre de Gibbs ∆G du système lors du
mélange en fonction des concentrations c1 et c2 des gaz parfaits dans le
mélange et montrer qu’elle est négative.

8.11 Solution

1) Comme le système est isolé, la variation d’énergie interne (1.30) lors du
mélange est nulle,

∆U = 0

2) D’après l’expression (5.65), la variation d’enthalpie d’un gaz parfait lors
d’un processus isotherme est nulle. Par conséquent, la variation d’enthalpie
totale lors du mélange est nulle,

∆H = 0

3) Compte tenu de l’expression (7.17) de la variation d’entropie pour un pro-
cessus isotherme, la variation d’entropie du système s’écrit,

∆S = ∆S1 + ∆S2 = N1R ln

(
V

V1

)
+N2R ln

(
V

V2

)
Avant le mélange les gaz parfaits satisfont les équations d’état (5.47),

V1 =
N1RT

p
et V2 =

N2RT

p

En sommant les deux équations précédentes on obtient une expression pour
le volume total V ,

V = V1 + V2 =
(N1 +N2)RT

p

(1)
Howard Reiss Dover, Methods of thermodynamics, 1996, sections 5.39 et suivantes.
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En substituant les deux équations précédentes dans l’expression de ∆S, on
obtient,

∆S = N1R ln

(
N1 +N2

N1

)
+N2R ln

(
N1 +N2

N2

)
D’après l’expression (8.35), les concentrations de gaz parfaits sont définies
comme,

c1 =
N1

N1 +N2
et c2 =

N2

N1 +N2

En substituant les deux équations précédentes dans l’expression de ∆S, on
obtient,

∆S = −N1R ln (c1)− N2R ln (c2) = −R ln
(
cN1
1 cN2

2

)
Comme les concentrations 0 < c1 < 1 et 0, < c2 < 1,

ln
(
cN1
1 cN2

2

)
< 0 ⇒ ∆S > 0

Par conséquent, l’entropie augmente lors du mélange.

4) D’après les équations (4.31) et (4.38) pour un processus isotherme, la va-
riation d’énergie libre de Gibbs ∆G est liée à la variation d’enthalpie ∆H,

∆G = ∆H − T ∆S − S∆T = −T ∆S = RT ln
(
cN1
1 cN2

2

)
< 0

Par conséquent, la variation d’énergie libre de Gibbs lors d’un mélange iso-
therme est négative. De plus, l’inégalité précédente signifie que le mélange
à pression et température constantes est un processus spontané.

8.12 Loi de Raoult

Un récipient à pression p et à température T contient deux substances 1 et 2,
présentes les deux en phases liquide et gazeuse. Déterminer la pression partielle
pA de la substance A dans la phase gazeuse (A = 1, 2) comme fonction des

concentrations c
(`)
1 et c

(`)
2 des substances 1 et 2 dans la phase liquide. La loi de

Raoult relie la pression partielle pA de la substance A à la pression de saturation
p◦A,

pA = p◦A c
(`)
A

où la pression de saturation p◦A est la pression que la substance pure A au-
rait dans une phase gazeuse en équilibre avec la phase liquide à température
T . Etablir la loi de Raoult en supposant que les mélanges liquides et gazeux
peuvent être traités comme des mélanges idéaux (sect. 8.5.2) et en considérant
que les volumes molaires dans la phase liquide sont négligeables par rapport
aux volumes molaires dans la phase gazeuse.
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8.12 Solution

Les potentiels chimiques de la substance A dans les phases liquide et gazeuse

dépendent des concentrations c
(g)
A dans la phase gazeuse et c

(`)
A dans la phase

liquide d’après la loi de mélange pour un mélange idéal (8.68),

µ
(`)
A

(
T, p, c

(`)
A

)
= µ

(`)
A (T, p) +RT ln

(
c
(`)
A

)
µ

(g)
A

(
T, p, c

(g)
A

)
= µ

(g)
A (T, p) +RT ln

(
c
(g)
A

)
Ici, µ

(`)
A (T, p) et µ

(g)
A (T, p) sont les potentiels chimiques de la substance pure

dans les phases liquide et gazeuse. Lorsqu’une concentration apparâıt dans
l’argument, alors la substance fait partie d’un mélange. Comme le problème se
réfère à la pression de saturation p◦A, on désire l’introduire dans les relations
ci-dessus. Pour la phase gazeuse, à l’aide de la relation (8.58) on écrit,

µ
(g)
A

(
T, p, c

(g)
A

)
= µ

(g)
A (T, p◦A) +RT ln

(
p

p◦A

)
+RT ln

(
c
(g)
A

)
Pour la phase liquide, à l’aide de la relation (8.85) établie pour des liquides
incompressibles, on écrit,

µ
(`)
A

(
T, p, c

(`)
A

)
= µ

(`)
A (T, p◦A) + (p− p◦A) v

(`)
A +RT ln

(
c
(`)
A

)
La condition d’équilibre pour la substance A dans le mélange s’écrit,

µ
(g)
A

(
T, p, c

(g)
A

)
= µ

(`)
A

(
T, p, c

(`)
A

)
La pression de saturation p◦A est définie par la condition d’équilibre chimique
entre les phases liquide et gazeuse,

µ
(g)
A (T, p◦A) = µ

(`)
A (T, p◦A)

Ainsi, l’égalité des potentiels chimiques de la substance A dans les phases liquide
et gazeuse implique que,

RT ln

(
p

p◦A

)
+RT ln

(
c
(g)
A

)
= (p− p◦A) v

(`)
A +RT ln

(
c
(`)
A

)
qui peut être mis sous la forme suivante,

RT ln

(
p c

(g)
A

p◦A c
(`)
A

)
= (p− p◦A) v

(`)
A

D’après la relation (8.67), la pression partielle de la substance A dans la phase

gazeuse est pA = p c
(g)
A , et d’après la relation (8.89),

(p− p◦A) v
(g)
A = RT
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ce qui implique que,

ln

(
pA

p◦A c
(`)
A

)
=
v

(`)
A

v
(g)
A

Etant donné que le volume molaire dans la phase liquide et négligeable par

rapport au volume molaire dans la phase gazeuse, i.e. v
(`)
A � v

(g)
A ,

ln

(
pA

p◦A c
(`)
A

)
' 0

Ainsi, on obtient la loi de Raoult,

pA = p◦A c
(`)
A

8.13 Température d’évaporation de l’eau salée

On considère un mélange d’eau et de sel avec une faible concentration de sel.
Utiliser la loi des mélange idéaux (8.68) pour évaluer le potentiel chimique de
l’eau dans l’eau salée. D’après la relation (8.51), pour toute substance A dans
n’importe quelle phase, µA (T ) = hA − T sA. Supposer que dans le voisinage
de la température d’évaporation T0 de l’eau pure, l’enthalpie molaire hA et
l’entropie molaire sA des phases liquide et gazeuse ne dépendent pas de la
température. Déterminer la variation de la température d’évaporation T − T0

comme fonction de la concentration de sel cA.

8.13 Solution

Etant donné que la concentration de sel est cA, la concentration d’eau est 1− cA,
où cA � 1. Comme le mélange est supposé idéal, le potentiel chimique de l’eau
s’écrit,

µ
(`)
A (T, 1− cA) = µ

(`)
A (T ) +RT ln (cA) ' µ(`)

A (T )− RTcA

Lorsque la vapeur d’eau et l’eau salée sont à l’équilibre, les potentiels chimiques
de l’eau dans les phases liquide et gazeuse sont égaux. Ainsi, on a pour de l’eau
pure à la température d’évaporation T0,

µ
(`)
A (T0) = µ

(g)
A (T0)

Lorsque la solution d’eau salée est à la température d’évaporation T , la même
condition d’équilibre s’écrit,

µ
(`)
A (T, 1− cA) = µ

(g)
A (T )

La différence entre ces deux conditions s’écrit,

µ
(`)
A (T, 1− cA)− µ

(`)
A (T0) = µ

(g)
A (T )− µ

(g)
A (T0)
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Compte tenu de la relation pour un mélange idéal, on obtient,

µ
(`)
A (T )− µ

(`)
A (T0)− RTcA = µ

(g)
A (T )− µ

(g)
A (T0)

A présent, on exprime les potentiels chimiques en termes des enthalpies molaires
et des entropies molaires,

h
(`)
A − T s

(`)
A − h

(`)
A + T0 s

(`)
A − RTcA = h

(g)
A − T s

(g)
A − h

(g)
A − T0 s

(g)
A

qui se réduit à,

(T − T0) s
(`)
A +RTcA = (T − T0) s

(g)
A

Ainsi, la variation de la température d’évaporation de l’eau en présence de sel
est,

T − T0 =
RTcA

s
(g)
A − s

(`)
A

8.14 Tension d’une pile

Appliquer la définition de la tension,

∆ϕ = − 1

zFF

∑
A

νaA µA

aux bornes d’une pile Daniell (sect.8.7.4) et montrer qu’elle permet d’obtenir
la relation (8.108). Montrer que la tension de la pile peut être écrite comme,

∆ϕ =
Aa

zFF
= − ∆aG

zFF
= − ∆aH − T∆aS

zFF

où
∆aH =

∑
A

νaA hA et ∆aS =
∑
A

νaA sA

8.14 Solution

En plus des électrons, qui sont produits à l’anode et consumés à la cathode à
l’intérieur d’une pile Daniell, il y a quatre autres substances impliquées dans
ces réactions électrochimiques, i.e. Cu2+, Cu, Zn2+ et Zn. Ainsi, la tension de
la pile est donnée par,

∆ϕ = − 1

zFF

∑
A

νaA µA

= − 1

zFF
(ν+Cu2+ µCu2+ + ν+Cu µCu + ν−Zn2+ µZn2+ + ν−Zn µZn)

où la signe + dénote la réduction qui a lieu à la cathode et le signe − dénote
l’oxydation qui a lieu à l’anode. D’après les équations redox à l’equilibre (8.96)
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et (8.95), les coefficients stœchiométriques sont ν+Cu2+ = − 1, ν+Cu = 1,
ν−Zn2+ = 1, ν−Zn = − 1, et l’électrovalence est z = 2. Ainsi, la tension de
la pile se réduit à la relation (8.108),

∆ϕ =
1

2FF

(
(µCu2+ − µCu)− (µZn2+ − µZn)

)
D’après la relation (8.18),

∆ϕ = − 1

zFF

∑
A

νaA µA =
Aa

zFF

Au vu de la relation (8.16),

∆ϕ = − 1

zFF

∑
A

νaA µA = − ∆aG

zFF

D’après la relation (8.51),

∆ϕ = − 1

zFF

∑
A

νaA µA = −
∑
A

νaA (hA − T sA) = − ∆aH − T∆aS

zFF

8.15 Cellule thermogalvanique

On considère une cellule électrochimique constituée de deux demi-cellules iden-
tiques excepté qu’elles sont maintenues à des températures différentes. C’est ce
qu’on appelle une cellule thermogalvanique. Déterminer le coefficient thermo-
galvanique,

α =
∂∆ϕ

∂T
=

∆aS

zFF

en utilisant la définition de la tension aux bornes d’une pile introduite en exer-
cice 8.14.

8.15 Solution

D’après la définition de la tension de la pile introduite dans l’exercice 8.14, le
coefficient thermogalvanique est donné par,

α =
∂∆ϕ

∂T
= − 1

zFf

∂

∂T
(∆aH − T∆aS) =

∆aS

zFF

Une valeur typique pour le coefficient Seebeck d’un métal ((11.86)) est bien
inférieure à la valeur typique du coefficient thermogalvanique. Les cellules ther-
mogalavaniques ont été considérées pour convertir de la chaleur en énergie.

(2)

(2)
S. W. Lee, Y. Yang, H.-W. Lee, H. Ghasemi, D. Kraemer, G. Chen, Y. Cui, An electroche-
mical system for efficiently harvesting low-grade heat energy, Nature Communications 5
3942 (2014).
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8.16 Dissipation d’un gaz parfait

On considère un système isolé constitué de deux sous-systèmes libellés 1 et 2
contenant un gaz parfait. Les deux sous-systèmes sont séparés par une paroi
diatherme, perméable et immobile (fig. 3.3). Le système est maintenu à une
température constante T . On suppose que la pression p2 du sous-système 2
et très légèrement supérieure à la pression p1 du sous-système 1, i.e. ∆p =
p2 − p1 � p2. Déterminer le taux de production d’entropie ΠS du système en
fonction de ∆p.

8.16 Solution

A température constante T , le taux de production d’entropie (3.44) s’écrit,

ΠS = − 1

T
(µ1 − µ2) Ṅ1 ≥ 0

L’expression (8.58) s’écrit en termes des potentiels chimiques µ1 ≡ µ (T, p1) et
µ2 ≡ µ (T, p2) comme,

µ (T, p1) = µ (T, p2) +RT ln

(
p1

p2

)
= µ (T, p2) +RT ln

(
1− ∆p

p2

)
Comme ∆p� p2, on peut utiliser le développement limité suivant,

ln

(
1− ∆p

p2

)
= − ∆p

p2
+O

(
∆p

p2

2)
Par conséquent, au premier ordre en ∆p/p2,

µ1 − µ2 = −RT ∆p

p2

ce qui implique que,

ΠS = R
∆p

p2
Ṅ1 ≥ 0

et ainsi Ṅ1 > 0. Par conséquent, le gaz se déplace du sous-système 2 vers le
sous-système 1.

8.17 Osmose gazeuse

Un système isolé est constitué de deux sous-systèmes rigides de volumes V1 et
V2 séparés par une membrane rigide et poreuse. L’hélium (He) peut diffuser à
travers la membrane, mais pas l’oxygène (O2). On dénote l’hélium A et l’oxy-
gène B. Le système est à l’équilibre thermique en tout temps. Chaque gaz peut
être considéré comme un gaz parfait qui satisfait les équations d’état (5.46)



20 Chimie et électrochimie

et (5.47), c’est-à-dire, p V = NRT et U = cNRT . Le mélange de gaz obéit la
relation des mélanges idéaux (8.68). Ainsi,

µA (T, p, cA) = µA (T, p) +RT ln (cA)

µB (T, p, cB) = µB (T, p) +RT ln (cB)

où µA (T, p) et µB (T, p) sont les potentiels chimiques substances A et B pures,
cA et cB sont les concentrations de A et B. Initialement, le système contient
N0 moles d’hélium dans le sous-système 1, et NB moles d’oxygène dans le sous-
système 2 (fig. 8.3). Les nombres de moles N0 et NB sont choisies de sorte que
la pression initiale pi soit la même dans les deux sous-systèmes. En tout temps,
chaque sous-système est supposé être homogène. On note N1 et N2 le nombre
de moles d’hélium dans les sous-systèmes 1 et 2, respectivement.

21 21

Initial Final

N0

NB

N0 N2 N2

NB

A : A :A :
B :B :

pression: pi pression: pi pression: p1 pression: p2

-

Fig. 8.3 Un système est divisé en deux sous-systèmes par une membrane osmotique qui
laisse diffuser la substance A, mais pas la substance B.

1) A l’équilibre, montrer que µA (T, p1) = µA (T, p2, cA).

2) Déduire du résultat précédent une relation entre les pressions p1 et p2

lorsque les deux sous-systèmes atteignent l’équilibre. Exprimer cA, p1 et
p2 en termes de N2. Déterminer p1 et p2 en termes de la pression initiale
pi sous la condition de volume égal, i.e. V1 = V2 = V0.

8.17 Solution

1) A l’aide de la relation (2.12) pour l’hélium dans chaque sous-système, on
obtient,

U̇1 = T Ṡ1 + µ1 Ṅ1 et U̇2 = T Ṡ2 + µ2 Ṅ2

ce qui implique que,

Ṡ = Ṡ1 + Ṡ2 =
1

T

(
U̇1 + U̇2

)
− µ1

T
Ṅ1 −

µ2

T
Ṅ2

Comme le système est isolé U̇ = 0, cela implique que U̇1 = − U̇2. La loi de
conservation de l’hélium implique que Ṅ1 = − Ṅ2. Ainsi,

Ṡ = − µ1 − µ2

T
Ṅ1
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et de manière équivalente,

∂S

∂N1
= − µ1 − µ2

T

D’après le deuxième principe, l’entropie totale S du système est maximale
à l’équilibre. Ainsi, à l’équilibre,

∂S

∂N1
= 0 (équilibre)

ce qui implique que µ1 ≡ µA (T, p1) est égal à µ2 ≡ µA (T, p2, cA),

µA (T, p1) = µA (T, p2, cA) (équilibre)

2) La relation (8.68) pour un mélange idéal,

µA (T, p2, cA) = µA (T, p2) +RT ln (cA)

implique qu’à l’équilibre chimique,

µA (T, p1) = µA (T, p2) +RT ln (cA)

De plus, d’après la relation (8.58),

µA (T, p1) = µA (T, p2) +RT ln

(
p1

p2

)
En comparant les deux relations précédentes et en utilisant la définition de
la concentration cA, on obtient,

cA =
p1

p2
et cA =

N2

N2 +N0

L’équation d’état du gaz parfait implique que,

p1 =
(N0 − N2)RT

V0
et p2 =

(N0 +N2)RT

V0

A l’aide des quatre équations précédentes, on obtient,

N2 =
N0

2

Ainsi,

p1 =
N0RT

2V0
et p2 =

3N0RT

2V0

De plus, comme,

pi =
N0RT

V0

on en déduit que,

p1 =
1

2
pi et p2 =

3

2
pi
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8.18 Centrale osmotique

Au niveau de la mer, l’eau d’un fleuve est détournée vers une centrale qui opère
selon le principe de l’osmose. Une turbine est installée le long de la conduite
qui amène l’eau du fleuve vers la membrane qui sépare l’eau douce du fleuve
de l’eau salée de la mer. L’eau salée proche de la membrane est supposée avoir
une faible concentration de sel c � 1. La pression de l’eau pure dans le fleuve
et dans la mer est p0. A cause de l’osmose, l’eau du fleuve passe à travers
la turbine puis à travers la membrane osmotique dans la mer. Juste après la
turbine et avant la membrane la pression est p1 = p0 − ∆p. Déterminer la
puissance mécanique de l’eau qui traverse la turbine,

PW = ∆p Ṅ v

où v est le volume molaire de l’eau et Ṅ est le nombre de moles d’eau qui
traversent la membrane osmotique par unité de temps. L’hydrodynamique de
la turbine est telle que l’on peut supposer que,

∆p =
RH Ṅ

v

de sorte que PW = RH Ṅ2. On note que la puissance mécanique a une forme
similaire à la puissance de Joule pour le chauffage électrique. Utiliser la relation
pour un mélange idéal (8.68) et déterminer la puissance mécanique PW . Comme
la concentration de sel est suffisamment faible, on peut supposer à température
ambiante que ∆µ� RTc. Monter que la puissance mécanique s’écrit,

PW = ∆µ Ṅ

où ∆µ est la chute de potentiel chimique entre le fleuve et l’eau de mer.

8.18 Solution

La différence de potentiel chimique de l’eau entre les deux côtés de la membrane
est donné par,

∆µ = µ (p0, 1− c)− µ (p1)

Ici, on utilise la notation de sect. 8.6. En particulier, lorsqu’un potentiel chi-
mique ne dépend pas de la concentration, cela signifie qu’on se réfère à une
substance pure. D’après la relation (8.85), on obtient pour l’eau pure,

µ (p1) = µ (p0) + v (p1 − p0) = µ (p0)− v∆p

Pour de l’eau salée, on suppose que c � 1, et à l’aide de la relation (8.84) on
écrit,

µ (p0, 1− c) = µ (p0)− RTc

Ainsi, étant donné que ∆µ� RTc, on obtient,

∆µ = v∆p− RTc ' v∆p
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Ainsi, en utilisant la relation précédente et l’hypothèse v∆p = RH Ṅ , on ob-
tient

∆µ = RH Ṅ

Ainsi, la puissance mécanique est donnée par,

PW = RH Ṅ2 = ∆µ Ṅ

Cette expression est analogue à la puissance électrique, exprimée comme le
produit d’un courant (i.e. Ṅ) et d’une différence de potentiel (i.e. ∆µ).


